12 #ifndef EIGEN_COMPLEX_SCHUR_H
13 #define EIGEN_COMPLEX_SCHUR_H
15 #include "./HessenbergDecomposition.h"
20 template<
typename MatrixType,
bool IsComplex>
struct complex_schur_reduce_to_hessenberg;
54 typedef _MatrixType MatrixType;
56 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
57 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
58 Options = MatrixType::Options,
59 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
60 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64 typedef typename MatrixType::Scalar
Scalar;
98 m_isInitialized(false),
99 m_matUisUptodate(false),
112 template<
typename InputType>
114 : m_matT(matrix.rows(),matrix.cols()),
115 m_matU(matrix.rows(),matrix.cols()),
116 m_hess(matrix.rows()),
117 m_isInitialized(false),
118 m_matUisUptodate(false),
140 eigen_assert(m_isInitialized &&
"ComplexSchur is not initialized.");
141 eigen_assert(m_matUisUptodate &&
"The matrix U has not been computed during the ComplexSchur decomposition.");
164 eigen_assert(m_isInitialized &&
"ComplexSchur is not initialized.");
190 template<
typename InputType>
210 template<
typename HessMatrixType,
typename OrthMatrixType>
219 eigen_assert(m_isInitialized &&
"ComplexSchur is not initialized.");
230 m_maxIters = maxIters;
251 bool m_isInitialized;
252 bool m_matUisUptodate;
256 bool subdiagonalEntryIsNeglegible(
Index i);
258 void reduceToTriangularForm(
bool computeU);
265 template<typename MatrixType>
266 inline bool
ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
268 RealScalar d = numext::norm1(m_matT.
coeff(i,i)) + numext::norm1(m_matT.
coeff(i+1,i+1));
269 RealScalar sd = numext::norm1(m_matT.
coeff(i+1,i));
280 template<
typename MatrixType>
284 if (iter == 10 || iter == 20)
287 return abs(numext::real(m_matT.
coeff(iu,iu-1))) + abs(numext::real(m_matT.
coeff(iu-1,iu-2)));
292 Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
293 RealScalar normt = t.cwiseAbs().sum();
303 RealScalar eival1_norm = numext::norm1(eival1);
304 RealScalar eival2_norm = numext::norm1(eival2);
307 if(eival1_norm > eival2_norm)
308 eival2 = det / eival1;
309 else if(eival2_norm!=RealScalar(0))
310 eival1 = det / eival2;
313 if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
314 return normt * eival1;
316 return normt * eival2;
320 template<
typename MatrixType>
321 template<
typename InputType>
324 m_matUisUptodate =
false;
325 eigen_assert(matrix.cols() == matrix.rows());
327 if(matrix.cols() == 1)
329 m_matT = matrix.derived().template cast<ComplexScalar>();
330 if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
332 m_isInitialized =
true;
333 m_matUisUptodate = computeU;
337 internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*
this, matrix.derived(), computeU);
342 template<
typename MatrixType>
343 template<
typename HessMatrixType,
typename OrthMatrixType>
349 reduceToTriangularForm(computeU);
355 template<
typename MatrixType,
bool IsComplex>
362 _this.m_matT = _this.m_hess.
matrixH();
363 if(computeU) _this.m_matU = _this.m_hess.
matrixQ();
367 template<
typename MatrixType>
376 _this.m_matT = _this.m_hess.
matrixH().template cast<ComplexScalar>();
380 MatrixType Q = _this.m_hess.
matrixQ();
381 _this.m_matU = Q.template cast<ComplexScalar>();
389 template<
typename MatrixType>
392 Index maxIters = m_maxIters;
400 Index iu = m_matT.cols() - 1;
410 if(!subdiagonalEntryIsNeglegible(iu-1))
break;
421 if(totalIter > maxIters)
break;
425 while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
435 JacobiRotation<ComplexScalar> rot;
436 rot.makeGivens(m_matT.
coeff(il,il) - shift, m_matT.
coeff(il+1,il));
437 m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
438 m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
439 if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
441 for(
Index i=il+1 ; i<iu ; i++)
445 m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
446 m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
447 if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
451 if(totalIter <= maxIters)
456 m_isInitialized =
true;
457 m_matUisUptodate = computeU;
462 #endif // EIGEN_COMPLEX_SCHUR_H