Path Tracer
InverseImpl.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_INVERSE_IMPL_H
12 #define EIGEN_INVERSE_IMPL_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /**********************************
19 *** General case implementation ***
20 **********************************/
21 
22 template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
24 {
25  EIGEN_DEVICE_FUNC
26  static inline void run(const MatrixType& matrix, ResultType& result)
27  {
28  result = matrix.partialPivLu().inverse();
29  }
30 };
31 
32 template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
33 struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
34 
35 /****************************
36 *** Size 1 implementation ***
37 ****************************/
38 
39 template<typename MatrixType, typename ResultType>
40 struct compute_inverse<MatrixType, ResultType, 1>
41 {
42  EIGEN_DEVICE_FUNC
43  static inline void run(const MatrixType& matrix, ResultType& result)
44  {
45  typedef typename MatrixType::Scalar Scalar;
46  internal::evaluator<MatrixType> matrixEval(matrix);
47  result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
48  }
49 };
50 
51 template<typename MatrixType, typename ResultType>
52 struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
53 {
54  EIGEN_DEVICE_FUNC
55  static inline void run(
56  const MatrixType& matrix,
57  const typename MatrixType::RealScalar& absDeterminantThreshold,
58  ResultType& result,
59  typename ResultType::Scalar& determinant,
60  bool& invertible
61  )
62  {
63  using std::abs;
64  determinant = matrix.coeff(0,0);
65  invertible = abs(determinant) > absDeterminantThreshold;
66  if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
67  }
68 };
69 
70 /****************************
71 *** Size 2 implementation ***
72 ****************************/
73 
74 template<typename MatrixType, typename ResultType>
75 EIGEN_DEVICE_FUNC
76 inline void compute_inverse_size2_helper(
77  const MatrixType& matrix, const typename ResultType::Scalar& invdet,
78  ResultType& result)
79 {
80  result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
81  result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
82  result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
83  result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
84 }
85 
86 template<typename MatrixType, typename ResultType>
87 struct compute_inverse<MatrixType, ResultType, 2>
88 {
89  EIGEN_DEVICE_FUNC
90  static inline void run(const MatrixType& matrix, ResultType& result)
91  {
92  typedef typename ResultType::Scalar Scalar;
93  const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
94  compute_inverse_size2_helper(matrix, invdet, result);
95  }
96 };
97 
98 template<typename MatrixType, typename ResultType>
99 struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
100 {
101  EIGEN_DEVICE_FUNC
102  static inline void run(
103  const MatrixType& matrix,
104  const typename MatrixType::RealScalar& absDeterminantThreshold,
105  ResultType& inverse,
106  typename ResultType::Scalar& determinant,
107  bool& invertible
108  )
109  {
110  using std::abs;
111  typedef typename ResultType::Scalar Scalar;
112  determinant = matrix.determinant();
113  invertible = abs(determinant) > absDeterminantThreshold;
114  if(!invertible) return;
115  const Scalar invdet = Scalar(1) / determinant;
116  compute_inverse_size2_helper(matrix, invdet, inverse);
117  }
118 };
119 
120 /****************************
121 *** Size 3 implementation ***
122 ****************************/
123 
124 template<typename MatrixType, int i, int j>
125 EIGEN_DEVICE_FUNC
126 inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
127 {
128  enum {
129  i1 = (i+1) % 3,
130  i2 = (i+2) % 3,
131  j1 = (j+1) % 3,
132  j2 = (j+2) % 3
133  };
134  return m.coeff(i1, j1) * m.coeff(i2, j2)
135  - m.coeff(i1, j2) * m.coeff(i2, j1);
136 }
137 
138 template<typename MatrixType, typename ResultType>
139 EIGEN_DEVICE_FUNC
140 inline void compute_inverse_size3_helper(
141  const MatrixType& matrix,
142  const typename ResultType::Scalar& invdet,
143  const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
144  ResultType& result)
145 {
146  result.row(0) = cofactors_col0 * invdet;
147  result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
148  result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
149  result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
150  result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
151  result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
152  result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
153 }
154 
155 template<typename MatrixType, typename ResultType>
156 struct compute_inverse<MatrixType, ResultType, 3>
157 {
158  EIGEN_DEVICE_FUNC
159  static inline void run(const MatrixType& matrix, ResultType& result)
160  {
161  typedef typename ResultType::Scalar Scalar;
163  cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
164  cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
165  cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
166  const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
167  const Scalar invdet = Scalar(1) / det;
168  compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
169  }
170 };
171 
172 template<typename MatrixType, typename ResultType>
173 struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
174 {
175  EIGEN_DEVICE_FUNC
176  static inline void run(
177  const MatrixType& matrix,
178  const typename MatrixType::RealScalar& absDeterminantThreshold,
179  ResultType& inverse,
180  typename ResultType::Scalar& determinant,
181  bool& invertible
182  )
183  {
184  using std::abs;
185  typedef typename ResultType::Scalar Scalar;
186  Matrix<Scalar,3,1> cofactors_col0;
187  cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
188  cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
189  cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
190  determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
191  invertible = abs(determinant) > absDeterminantThreshold;
192  if(!invertible) return;
193  const Scalar invdet = Scalar(1) / determinant;
194  compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
195  }
196 };
197 
198 /****************************
199 *** Size 4 implementation ***
200 ****************************/
201 
202 template<typename Derived>
203 EIGEN_DEVICE_FUNC
204 inline const typename Derived::Scalar general_det3_helper
205 (const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
206 {
207  return matrix.coeff(i1,j1)
208  * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
209 }
210 
211 template<typename MatrixType, int i, int j>
212 EIGEN_DEVICE_FUNC
213 inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
214 {
215  enum {
216  i1 = (i+1) % 4,
217  i2 = (i+2) % 4,
218  i3 = (i+3) % 4,
219  j1 = (j+1) % 4,
220  j2 = (j+2) % 4,
221  j3 = (j+3) % 4
222  };
223  return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
224  + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
225  + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
226 }
227 
228 template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
230 {
231  EIGEN_DEVICE_FUNC
232  static void run(const MatrixType& matrix, ResultType& result)
233  {
234  result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
235  result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
236  result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
237  result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
238  result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
239  result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
240  result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
241  result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
242  result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
243  result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
244  result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
245  result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
246  result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
247  result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
248  result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
249  result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
250  result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
251  }
252 };
253 
254 template<typename MatrixType, typename ResultType>
255 struct compute_inverse<MatrixType, ResultType, 4>
256  : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
257  MatrixType, ResultType>
258 {
259 };
260 
261 template<typename MatrixType, typename ResultType>
262 struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
263 {
264  EIGEN_DEVICE_FUNC
265  static inline void run(
266  const MatrixType& matrix,
267  const typename MatrixType::RealScalar& absDeterminantThreshold,
268  ResultType& inverse,
269  typename ResultType::Scalar& determinant,
270  bool& invertible
271  )
272  {
273  using std::abs;
274  determinant = matrix.determinant();
275  invertible = abs(determinant) > absDeterminantThreshold;
276  if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
277  }
278 };
279 
280 /*************************
281 *** MatrixBase methods ***
282 *************************/
283 
284 } // end namespace internal
285 
286 namespace internal {
287 
288 // Specialization for "dense = dense_xpr.inverse()"
289 template<typename DstXprType, typename XprType>
290 struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense>
291 {
293  EIGEN_DEVICE_FUNC
294  static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &)
295  {
296  Index dstRows = src.rows();
297  Index dstCols = src.cols();
298  if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
299  dst.resize(dstRows, dstCols);
300 
301  const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
302  EIGEN_ONLY_USED_FOR_DEBUG(Size);
303  eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
304  && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
305 
307  typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded;
308 
309  ActualXprType actual_xpr(src.nestedExpression());
310 
312  }
313 };
314 
315 
316 } // end namespace internal
317 
335 template<typename Derived>
336 EIGEN_DEVICE_FUNC
338 {
339  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
340  eigen_assert(rows() == cols());
341  return Inverse<Derived>(derived());
342 }
343 
362 template<typename Derived>
363 template<typename ResultType>
365  ResultType& inverse,
366  typename ResultType::Scalar& determinant,
367  bool& invertible,
368  const RealScalar& absDeterminantThreshold
369  ) const
370 {
371  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
372  eigen_assert(rows() == cols());
373  // for 2x2, it's worth giving a chance to avoid evaluating.
374  // for larger sizes, evaluating has negligible cost and limits code size.
375  typedef typename internal::conditional<
376  RowsAtCompileTime == 2,
379  >::type MatrixType;
381  (derived(), absDeterminantThreshold, inverse, determinant, invertible);
382 }
383 
401 template<typename Derived>
402 template<typename ResultType>
404  ResultType& inverse,
405  bool& invertible,
406  const RealScalar& absDeterminantThreshold
407  ) const
408 {
409  Scalar determinant;
410  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
411  eigen_assert(rows() == cols());
412  computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
413 }
414 
415 } // end namespace Eigen
416 
417 #endif // EIGEN_INVERSE_IMPL_H
Eigen::Inverse
Expression of the inverse of another expression.
Definition: Inverse.h:44
Eigen::MatrixBase::computeInverseWithCheck
void computeInverseWithCheck(ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
Definition: InverseImpl.h:403
Eigen::MatrixBase::computeInverseAndDetWithCheck
void computeInverseAndDetWithCheck(ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
Definition: InverseImpl.h:364
Eigen
Namespace containing all symbols from the Eigen library.
Definition: LDLT.h:16
Eigen::internal::compute_inverse
Definition: InverseImpl.h:24
Eigen::DenseBase::Scalar
internal::traits< Derived >::Scalar Scalar
Definition: DenseBase.h:66
Eigen::internal::remove_all
Definition: Meta.h:93
Eigen::internal::Dense2Dense
Definition: AssignEvaluator.h:804
Eigen::internal::true_type
Definition: Meta.h:63
Eigen::internal::compute_inverse_size4
Definition: InverseImpl.h:230
Eigen::Matrix::coeffRef
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
Definition: PlainObjectBase.h:183
Eigen::internal::evaluator< MatrixType >
Eigen::MatrixBase::inverse
EIGEN_DEVICE_FUNC const Inverse< Derived > inverse() const
Definition: InverseImpl.h:337
Eigen::internal::assign_op
Definition: AssignmentFunctors.h:21
Eigen::internal::conditional
Definition: Meta.h:76
Eigen::internal::Assignment
Definition: AssignEvaluator.h:814
Eigen::Matrix
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:180
Eigen::MatrixBase
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50
Eigen::NumTraits
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:213
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:42
Eigen::internal::compute_inverse_and_det_with_check
Definition: InverseImpl.h:33