Path Tracer
LLT.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_LLT_H
11 #define EIGEN_LLT_H
12 
13 namespace Eigen {
14 
15 namespace internal{
16 
17 template<typename _MatrixType, int _UpLo> struct traits<LLT<_MatrixType, _UpLo> >
18  : traits<_MatrixType>
19 {
20  typedef MatrixXpr XprKind;
21  typedef SolverStorage StorageKind;
22  typedef int StorageIndex;
23  enum { Flags = 0 };
24 };
25 
26 template<typename MatrixType, int UpLo> struct LLT_Traits;
27 }
28 
66 template<typename _MatrixType, int _UpLo> class LLT
67  : public SolverBase<LLT<_MatrixType, _UpLo> >
68 {
69  public:
70  typedef _MatrixType MatrixType;
71  typedef SolverBase<LLT> Base;
72  friend class SolverBase<LLT>;
73 
74  EIGEN_GENERIC_PUBLIC_INTERFACE(LLT)
75  enum {
76  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77  };
78 
79  enum {
81  AlignmentMask = int(PacketSize)-1,
82  UpLo = _UpLo
83  };
84 
86 
93  LLT() : m_matrix(), m_isInitialized(false) {}
94 
101  explicit LLT(Index size) : m_matrix(size, size),
102  m_isInitialized(false) {}
103 
104  template<typename InputType>
105  explicit LLT(const EigenBase<InputType>& matrix)
106  : m_matrix(matrix.rows(), matrix.cols()),
107  m_isInitialized(false)
108  {
109  compute(matrix.derived());
110  }
111 
119  template<typename InputType>
120  explicit LLT(EigenBase<InputType>& matrix)
121  : m_matrix(matrix.derived()),
122  m_isInitialized(false)
123  {
124  compute(matrix.derived());
125  }
126 
128  inline typename Traits::MatrixU matrixU() const
129  {
130  eigen_assert(m_isInitialized && "LLT is not initialized.");
131  return Traits::getU(m_matrix);
132  }
133 
135  inline typename Traits::MatrixL matrixL() const
136  {
137  eigen_assert(m_isInitialized && "LLT is not initialized.");
138  return Traits::getL(m_matrix);
139  }
140 
141  #ifdef EIGEN_PARSED_BY_DOXYGEN
142 
152  template<typename Rhs>
153  inline const Solve<LLT, Rhs>
154  solve(const MatrixBase<Rhs>& b) const;
155  #endif
156 
157  template<typename Derived>
158  void solveInPlace(const MatrixBase<Derived> &bAndX) const;
159 
160  template<typename InputType>
161  LLT& compute(const EigenBase<InputType>& matrix);
162 
166  RealScalar rcond() const
167  {
168  eigen_assert(m_isInitialized && "LLT is not initialized.");
169  eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
170  return internal::rcond_estimate_helper(m_l1_norm, *this);
171  }
172 
177  inline const MatrixType& matrixLLT() const
178  {
179  eigen_assert(m_isInitialized && "LLT is not initialized.");
180  return m_matrix;
181  }
182 
183  MatrixType reconstructedMatrix() const;
184 
185 
192  {
193  eigen_assert(m_isInitialized && "LLT is not initialized.");
194  return m_info;
195  }
196 
202  const LLT& adjoint() const { return *this; };
203 
204  inline Index rows() const { return m_matrix.rows(); }
205  inline Index cols() const { return m_matrix.cols(); }
206 
207  template<typename VectorType>
208  LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
209 
210  #ifndef EIGEN_PARSED_BY_DOXYGEN
211  template<typename RhsType, typename DstType>
212  void _solve_impl(const RhsType &rhs, DstType &dst) const;
213 
214  template<bool Conjugate, typename RhsType, typename DstType>
215  void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
216  #endif
217 
218  protected:
219 
220  static void check_template_parameters()
221  {
222  EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
223  }
224 
229  MatrixType m_matrix;
230  RealScalar m_l1_norm;
231  bool m_isInitialized;
232  ComputationInfo m_info;
233 };
234 
235 namespace internal {
236 
237 template<typename Scalar, int UpLo> struct llt_inplace;
238 
239 template<typename MatrixType, typename VectorType>
240 static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
241 {
242  using std::sqrt;
243  typedef typename MatrixType::Scalar Scalar;
244  typedef typename MatrixType::RealScalar RealScalar;
245  typedef typename MatrixType::ColXpr ColXpr;
246  typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
247  typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
248  typedef Matrix<Scalar,Dynamic,1> TempVectorType;
249  typedef typename TempVectorType::SegmentReturnType TempVecSegment;
250 
251  Index n = mat.cols();
252  eigen_assert(mat.rows()==n && vec.size()==n);
253 
254  TempVectorType temp;
255 
256  if(sigma>0)
257  {
258  // This version is based on Givens rotations.
259  // It is faster than the other one below, but only works for updates,
260  // i.e., for sigma > 0
261  temp = sqrt(sigma) * vec;
262 
263  for(Index i=0; i<n; ++i)
264  {
266  g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
267 
268  Index rs = n-i-1;
269  if(rs>0)
270  {
271  ColXprSegment x(mat.col(i).tail(rs));
272  TempVecSegment y(temp.tail(rs));
273  apply_rotation_in_the_plane(x, y, g);
274  }
275  }
276  }
277  else
278  {
279  temp = vec;
280  RealScalar beta = 1;
281  for(Index j=0; j<n; ++j)
282  {
283  RealScalar Ljj = numext::real(mat.coeff(j,j));
284  RealScalar dj = numext::abs2(Ljj);
285  Scalar wj = temp.coeff(j);
286  RealScalar swj2 = sigma*numext::abs2(wj);
287  RealScalar gamma = dj*beta + swj2;
288 
289  RealScalar x = dj + swj2/beta;
290  if (x<=RealScalar(0))
291  return j;
292  RealScalar nLjj = sqrt(x);
293  mat.coeffRef(j,j) = nLjj;
294  beta += swj2/dj;
295 
296  // Update the terms of L
297  Index rs = n-j-1;
298  if(rs)
299  {
300  temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
301  if(gamma != 0)
302  mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
303  }
304  }
305  }
306  return -1;
307 }
308 
309 template<typename Scalar> struct llt_inplace<Scalar, Lower>
310 {
311  typedef typename NumTraits<Scalar>::Real RealScalar;
312  template<typename MatrixType>
313  static Index unblocked(MatrixType& mat)
314  {
315  using std::sqrt;
316 
317  eigen_assert(mat.rows()==mat.cols());
318  const Index size = mat.rows();
319  for(Index k = 0; k < size; ++k)
320  {
321  Index rs = size-k-1; // remaining size
322 
323  Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
324  Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
325  Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
326 
327  RealScalar x = numext::real(mat.coeff(k,k));
328  if (k>0) x -= A10.squaredNorm();
329  if (x<=RealScalar(0))
330  return k;
331  mat.coeffRef(k,k) = x = sqrt(x);
332  if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
333  if (rs>0) A21 /= x;
334  }
335  return -1;
336  }
337 
338  template<typename MatrixType>
339  static Index blocked(MatrixType& m)
340  {
341  eigen_assert(m.rows()==m.cols());
342  Index size = m.rows();
343  if(size<32)
344  return unblocked(m);
345 
346  Index blockSize = size/8;
347  blockSize = (blockSize/16)*16;
348  blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
349 
350  for (Index k=0; k<size; k+=blockSize)
351  {
352  // partition the matrix:
353  // A00 | - | -
354  // lu = A10 | A11 | -
355  // A20 | A21 | A22
356  Index bs = (std::min)(blockSize, size-k);
357  Index rs = size - k - bs;
358  Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
359  Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
360  Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
361 
362  Index ret;
363  if((ret=unblocked(A11))>=0) return k+ret;
364  if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
365  if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
366  }
367  return -1;
368  }
369 
370  template<typename MatrixType, typename VectorType>
371  static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
372  {
373  return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
374  }
375 };
376 
377 template<typename Scalar> struct llt_inplace<Scalar, Upper>
378 {
379  typedef typename NumTraits<Scalar>::Real RealScalar;
380 
381  template<typename MatrixType>
382  static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat)
383  {
384  Transpose<MatrixType> matt(mat);
386  }
387  template<typename MatrixType>
388  static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat)
389  {
390  Transpose<MatrixType> matt(mat);
392  }
393  template<typename MatrixType, typename VectorType>
394  static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
395  {
396  Transpose<MatrixType> matt(mat);
397  return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
398  }
399 };
400 
401 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
402 {
405  static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
406  static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
407  static bool inplace_decomposition(MatrixType& m)
409 };
410 
411 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
412 {
415  static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
416  static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
417  static bool inplace_decomposition(MatrixType& m)
419 };
420 
421 } // end namespace internal
422 
430 template<typename MatrixType, int _UpLo>
431 template<typename InputType>
433 {
434  check_template_parameters();
435 
436  eigen_assert(a.rows()==a.cols());
437  const Index size = a.rows();
438  m_matrix.resize(size, size);
439  if (!internal::is_same_dense(m_matrix, a.derived()))
440  m_matrix = a.derived();
441 
442  // Compute matrix L1 norm = max abs column sum.
443  m_l1_norm = RealScalar(0);
444  // TODO move this code to SelfAdjointView
445  for (Index col = 0; col < size; ++col) {
446  RealScalar abs_col_sum;
447  if (_UpLo == Lower)
448  abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
449  else
450  abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
451  if (abs_col_sum > m_l1_norm)
452  m_l1_norm = abs_col_sum;
453  }
454 
455  m_isInitialized = true;
456  bool ok = Traits::inplace_decomposition(m_matrix);
457  m_info = ok ? Success : NumericalIssue;
458 
459  return *this;
460 }
461 
467 template<typename _MatrixType, int _UpLo>
468 template<typename VectorType>
469 LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
470 {
471  EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
472  eigen_assert(v.size()==m_matrix.cols());
473  eigen_assert(m_isInitialized);
475  m_info = NumericalIssue;
476  else
477  m_info = Success;
478 
479  return *this;
480 }
481 
482 #ifndef EIGEN_PARSED_BY_DOXYGEN
483 template<typename _MatrixType,int _UpLo>
484 template<typename RhsType, typename DstType>
485 void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
486 {
487  _solve_impl_transposed<true>(rhs, dst);
488 }
489 
490 template<typename _MatrixType,int _UpLo>
491 template<bool Conjugate, typename RhsType, typename DstType>
492 void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
493 {
494  dst = rhs;
495 
496  matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst);
497  matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst);
498 }
499 #endif
500 
514 template<typename MatrixType, int _UpLo>
515 template<typename Derived>
516 void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
517 {
518  eigen_assert(m_isInitialized && "LLT is not initialized.");
519  eigen_assert(m_matrix.rows()==bAndX.rows());
520  matrixL().solveInPlace(bAndX);
521  matrixU().solveInPlace(bAndX);
522 }
523 
527 template<typename MatrixType, int _UpLo>
529 {
530  eigen_assert(m_isInitialized && "LLT is not initialized.");
531  return matrixL() * matrixL().adjoint().toDenseMatrix();
532 }
533 
538 template<typename Derived>
541 {
542  return LLT<PlainObject>(derived());
543 }
544 
549 template<typename MatrixType, unsigned int UpLo>
552 {
553  return LLT<PlainObject,UpLo>(m_matrix);
554 }
555 
556 } // end namespace Eigen
557 
558 #endif // EIGEN_LLT_H
Eigen::NumericalIssue
@ NumericalIssue
Definition: Constants.h:443
Eigen::LLT::adjoint
const LLT & adjoint() const
Definition: LLT.h:202
Eigen::MatrixXpr
Definition: Constants.h:518
Eigen
Namespace containing all symbols from the Eigen library.
Definition: LDLT.h:16
Eigen::Block
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:105
Eigen::EigenBase::derived
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
Eigen::LLT::rcond
RealScalar rcond() const
Definition: LLT.h:166
Eigen::EigenBase::rows
EIGEN_DEVICE_FUNC Index rows() const
Definition: EigenBase.h:60
Eigen::EigenBase< LLT< _MatrixType, _UpLo > >::Index
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:39
Eigen::MatrixBase::llt
const LLT< PlainObject > llt() const
Definition: LLT.h:540
Eigen::EigenBase
Definition: EigenBase.h:30
Eigen::internal::packet_traits
Definition: GenericPacketMath.h:107
Eigen::SelfAdjointView::llt
const LLT< PlainObject, UpLo > llt() const
Definition: LLT.h:551
Eigen::Upper
@ Upper
Definition: Constants.h:210
Eigen::Success
@ Success
Definition: Constants.h:441
Eigen::internal::llt_inplace
Definition: LLT.h:237
Eigen::JacobiRotation
Rotation given by a cosine-sine pair.
Definition: Jacobi.h:35
Eigen::Transpose
Expression of the transpose of a matrix.
Definition: Transpose.h:54
Eigen::EigenBase< LLT< _MatrixType, _UpLo > >::size
EIGEN_DEVICE_FUNC Index size() const
Definition: EigenBase.h:67
Eigen::EigenBase::cols
EIGEN_DEVICE_FUNC Index cols() const
Definition: EigenBase.h:63
Eigen::SolverStorage
Definition: Constants.h:509
Eigen::LLT::matrixL
Traits::MatrixL matrixL() const
Definition: LLT.h:135
Eigen::SolverBase< LLT< _MatrixType, _UpLo > >::derived
EIGEN_DEVICE_FUNC LLT< _MatrixType, _UpLo > & derived()
Definition: EigenBase.h:46
Eigen::LLT::reconstructedMatrix
MatrixType reconstructedMatrix() const
Definition: LLT.h:528
Eigen::Lower
@ Lower
Definition: Constants.h:208
Eigen::JacobiRotation::makeGivens
EIGEN_DEVICE_FUNC void makeGivens(const Scalar &p, const Scalar &q, Scalar *r=0)
Definition: Jacobi.h:162
Eigen::internal::LLT_Traits
Definition: LLT.h:26
Eigen::LLT
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition: LLT.h:68
Eigen::Solve
Pseudo expression representing a solving operation.
Definition: Solve.h:63
Eigen::LLT::info
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: LLT.h:191
Eigen::internal::traits
Definition: ForwardDeclarations.h:17
Eigen::LLT::LLT
LLT(Index size)
Default Constructor with memory preallocation.
Definition: LLT.h:101
Eigen::LLT::LLT
LLT(EigenBase< InputType > &matrix)
Constructs a LLT factorization from a given matrix.
Definition: LLT.h:120
Eigen::LLT::matrixU
Traits::MatrixU matrixU() const
Definition: LLT.h:128
Eigen::Matrix< Scalar, Dynamic, 1 >
Eigen::MatrixBase
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:50
Eigen::ComputationInfo
ComputationInfo
Definition: Constants.h:439
Eigen::LLT::matrixLLT
const MatrixType & matrixLLT() const
Definition: LLT.h:177
Eigen::TriangularView
Expression of a triangular part in a matrix.
Definition: TriangularMatrix.h:189
Eigen::LLT::LLT
LLT()
Default Constructor.
Definition: LLT.h:93
Eigen::NumTraits
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:213
Eigen::SolverBase< LLT< _MatrixType, _UpLo > >::solve
const Solve< LLT< _MatrixType, _UpLo >, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition: SolverBase.h:106
Eigen::SolverBase
A base class for matrix decomposition and solvers.
Definition: SolverBase.h:69
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:42