Path Tracer
RealSchur.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_REAL_SCHUR_H
12 #define EIGEN_REAL_SCHUR_H
13 
14 #include "./HessenbergDecomposition.h"
15 
16 namespace Eigen {
17 
54 template<typename _MatrixType> class RealSchur
55 {
56  public:
57  typedef _MatrixType MatrixType;
58  enum {
59  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61  Options = MatrixType::Options,
62  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64  };
65  typedef typename MatrixType::Scalar Scalar;
66  typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
67  typedef Eigen::Index Index;
68 
71 
83  explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
84  : m_matT(size, size),
85  m_matU(size, size),
86  m_workspaceVector(size),
87  m_hess(size),
88  m_isInitialized(false),
89  m_matUisUptodate(false),
90  m_maxIters(-1)
91  { }
92 
103  template<typename InputType>
104  explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
105  : m_matT(matrix.rows(),matrix.cols()),
106  m_matU(matrix.rows(),matrix.cols()),
107  m_workspaceVector(matrix.rows()),
108  m_hess(matrix.rows()),
109  m_isInitialized(false),
110  m_matUisUptodate(false),
111  m_maxIters(-1)
112  {
113  compute(matrix.derived(), computeU);
114  }
115 
127  const MatrixType& matrixU() const
128  {
129  eigen_assert(m_isInitialized && "RealSchur is not initialized.");
130  eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
131  return m_matU;
132  }
133 
144  const MatrixType& matrixT() const
145  {
146  eigen_assert(m_isInitialized && "RealSchur is not initialized.");
147  return m_matT;
148  }
149 
169  template<typename InputType>
170  RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
171 
189  template<typename HessMatrixType, typename OrthMatrixType>
190  RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
196  {
197  eigen_assert(m_isInitialized && "RealSchur is not initialized.");
198  return m_info;
199  }
200 
207  {
208  m_maxIters = maxIters;
209  return *this;
210  }
211 
214  {
215  return m_maxIters;
216  }
217 
223  static const int m_maxIterationsPerRow = 40;
224 
225  private:
226 
227  MatrixType m_matT;
228  MatrixType m_matU;
229  ColumnVectorType m_workspaceVector;
231  ComputationInfo m_info;
232  bool m_isInitialized;
233  bool m_matUisUptodate;
234  Index m_maxIters;
235 
237 
238  Scalar computeNormOfT();
239  Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero);
240  void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241  void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242  void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
243  void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
244 };
245 
246 
247 template<typename MatrixType>
248 template<typename InputType>
250 {
251  const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
252 
253  eigen_assert(matrix.cols() == matrix.rows());
254  Index maxIters = m_maxIters;
255  if (maxIters == -1)
256  maxIters = m_maxIterationsPerRow * matrix.rows();
257 
258  Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
259  if(scale<considerAsZero)
260  {
261  m_matT.setZero(matrix.rows(),matrix.cols());
262  if(computeU)
263  m_matU.setIdentity(matrix.rows(),matrix.cols());
264  m_info = Success;
265  m_isInitialized = true;
266  m_matUisUptodate = computeU;
267  return *this;
268  }
269 
270  // Step 1. Reduce to Hessenberg form
271  m_hess.compute(matrix.derived()/scale);
272 
273  // Step 2. Reduce to real Schur form
274  // Note: we copy m_hess.matrixQ() into m_matU here and not in computeFromHessenberg
275  // to be able to pass our working-space buffer for the Householder to Dense evaluation.
276  m_workspaceVector.resize(matrix.cols());
277  if(computeU)
278  m_hess.matrixQ().evalTo(m_matU, m_workspaceVector);
279  computeFromHessenberg(m_hess.matrixH(), m_matU, computeU);
280 
281  m_matT *= scale;
282 
283  return *this;
284 }
285 template<typename MatrixType>
286 template<typename HessMatrixType, typename OrthMatrixType>
287 RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
288 {
289  using std::abs;
290 
291  m_matT = matrixH;
292  m_workspaceVector.resize(m_matT.cols());
293  if(computeU && !internal::is_same_dense(m_matU,matrixQ))
294  m_matU = matrixQ;
295 
296  Index maxIters = m_maxIters;
297  if (maxIters == -1)
298  maxIters = m_maxIterationsPerRow * matrixH.rows();
299  Scalar* workspace = &m_workspaceVector.coeffRef(0);
300 
301  // The matrix m_matT is divided in three parts.
302  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
303  // Rows il,...,iu is the part we are working on (the active window).
304  // Rows iu+1,...,end are already brought in triangular form.
305  Index iu = m_matT.cols() - 1;
306  Index iter = 0; // iteration count for current eigenvalue
307  Index totalIter = 0; // iteration count for whole matrix
308  Scalar exshift(0); // sum of exceptional shifts
309  Scalar norm = computeNormOfT();
310  // sub-diagonal entries smaller than considerAsZero will be treated as zero.
311  // We use eps^2 to enable more precision in small eigenvalues.
312  Scalar considerAsZero = numext::maxi<Scalar>( norm * numext::abs2(NumTraits<Scalar>::epsilon()),
313  (std::numeric_limits<Scalar>::min)() );
314 
315  if(norm!=Scalar(0))
316  {
317  while (iu >= 0)
318  {
319  Index il = findSmallSubdiagEntry(iu,considerAsZero);
320 
321  // Check for convergence
322  if (il == iu) // One root found
323  {
324  m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
325  if (iu > 0)
326  m_matT.coeffRef(iu, iu-1) = Scalar(0);
327  iu--;
328  iter = 0;
329  }
330  else if (il == iu-1) // Two roots found
331  {
332  splitOffTwoRows(iu, computeU, exshift);
333  iu -= 2;
334  iter = 0;
335  }
336  else // No convergence yet
337  {
338  // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
339  Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo;
340  computeShift(iu, iter, exshift, shiftInfo);
341  iter = iter + 1;
342  totalIter = totalIter + 1;
343  if (totalIter > maxIters) break;
344  Index im;
345  initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
346  performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
347  }
348  }
349  }
350  if(totalIter <= maxIters)
351  m_info = Success;
352  else
353  m_info = NoConvergence;
354 
355  m_isInitialized = true;
356  m_matUisUptodate = computeU;
357  return *this;
358 }
359 
361 template<typename MatrixType>
362 inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
363 {
364  const Index size = m_matT.cols();
365  // FIXME to be efficient the following would requires a triangular reduxion code
366  // Scalar norm = m_matT.upper().cwiseAbs().sum()
367  // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
368  Scalar norm(0);
369  for (Index j = 0; j < size; ++j)
370  norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
371  return norm;
372 }
373 
375 template<typename MatrixType>
376 inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero)
377 {
378  using std::abs;
379  Index res = iu;
380  while (res > 0)
381  {
382  Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
383 
384  s = numext::maxi<Scalar>(s * NumTraits<Scalar>::epsilon(), considerAsZero);
385 
386  if (abs(m_matT.coeff(res,res-1)) <= s)
387  break;
388  res--;
389  }
390  return res;
391 }
392 
394 template<typename MatrixType>
395 inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
396 {
397  using std::sqrt;
398  using std::abs;
399  const Index size = m_matT.cols();
400 
401  // The eigenvalues of the 2x2 matrix [a b; c d] are
402  // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
403  Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
404  Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
405  m_matT.coeffRef(iu,iu) += exshift;
406  m_matT.coeffRef(iu-1,iu-1) += exshift;
407 
408  if (q >= Scalar(0)) // Two real eigenvalues
409  {
410  Scalar z = sqrt(abs(q));
411  JacobiRotation<Scalar> rot;
412  if (p >= Scalar(0))
413  rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
414  else
415  rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
416 
417  m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
418  m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
419  m_matT.coeffRef(iu, iu-1) = Scalar(0);
420  if (computeU)
421  m_matU.applyOnTheRight(iu-1, iu, rot);
422  }
423 
424  if (iu > 1)
425  m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
426 }
427 
429 template<typename MatrixType>
430 inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
431 {
432  using std::sqrt;
433  using std::abs;
434  shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
435  shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
436  shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
437 
438  // Wilkinson's original ad hoc shift
439  if (iter == 10)
440  {
441  exshift += shiftInfo.coeff(0);
442  for (Index i = 0; i <= iu; ++i)
443  m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
444  Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
445  shiftInfo.coeffRef(0) = Scalar(0.75) * s;
446  shiftInfo.coeffRef(1) = Scalar(0.75) * s;
447  shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
448  }
449 
450  // MATLAB's new ad hoc shift
451  if (iter == 30)
452  {
453  Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
454  s = s * s + shiftInfo.coeff(2);
455  if (s > Scalar(0))
456  {
457  s = sqrt(s);
458  if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
459  s = -s;
460  s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
461  s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
462  exshift += s;
463  for (Index i = 0; i <= iu; ++i)
464  m_matT.coeffRef(i,i) -= s;
465  shiftInfo.setConstant(Scalar(0.964));
466  }
467  }
468 }
469 
471 template<typename MatrixType>
472 inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
473 {
474  using std::abs;
475  Vector3s& v = firstHouseholderVector; // alias to save typing
476 
477  for (im = iu-2; im >= il; --im)
478  {
479  const Scalar Tmm = m_matT.coeff(im,im);
480  const Scalar r = shiftInfo.coeff(0) - Tmm;
481  const Scalar s = shiftInfo.coeff(1) - Tmm;
482  v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
483  v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
484  v.coeffRef(2) = m_matT.coeff(im+2,im+1);
485  if (im == il) {
486  break;
487  }
488  const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
489  const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
490  if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
491  break;
492  }
493 }
494 
496 template<typename MatrixType>
497 inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
498 {
499  eigen_assert(im >= il);
500  eigen_assert(im <= iu-2);
501 
502  const Index size = m_matT.cols();
503 
504  for (Index k = im; k <= iu-2; ++k)
505  {
506  bool firstIteration = (k == im);
507 
508  Vector3s v;
509  if (firstIteration)
510  v = firstHouseholderVector;
511  else
512  v = m_matT.template block<3,1>(k,k-1);
513 
514  Scalar tau, beta;
515  Matrix<Scalar, 2, 1> ess;
516  v.makeHouseholder(ess, tau, beta);
517 
518  if (beta != Scalar(0)) // if v is not zero
519  {
520  if (firstIteration && k > il)
521  m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
522  else if (!firstIteration)
523  m_matT.coeffRef(k,k-1) = beta;
524 
525  // These Householder transformations form the O(n^3) part of the algorithm
526  m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
527  m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
528  if (computeU)
529  m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
530  }
531  }
532 
533  Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
534  Scalar tau, beta;
535  Matrix<Scalar, 1, 1> ess;
536  v.makeHouseholder(ess, tau, beta);
537 
538  if (beta != Scalar(0)) // if v is not zero
539  {
540  m_matT.coeffRef(iu-1, iu-2) = beta;
541  m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
542  m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
543  if (computeU)
544  m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
545  }
546 
547  // clean up pollution due to round-off errors
548  for (Index i = im+2; i <= iu; ++i)
549  {
550  m_matT.coeffRef(i,i-2) = Scalar(0);
551  if (i > im+2)
552  m_matT.coeffRef(i,i-3) = Scalar(0);
553  }
554 }
555 
556 } // end namespace Eigen
557 
558 #endif // EIGEN_REAL_SCHUR_H
Eigen::RealSchur::Index
Eigen::Index Index
Definition: RealSchur.h:67
Eigen
Namespace containing all symbols from the Eigen library.
Definition: LDLT.h:16
Eigen::EigenBase::derived
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
Eigen::EigenBase::rows
EIGEN_DEVICE_FUNC Index rows() const
Definition: EigenBase.h:60
Eigen::EigenBase
Definition: EigenBase.h:30
Eigen::RealSchur::matrixT
const MatrixType & matrixT() const
Returns the quasi-triangular matrix in the Schur decomposition.
Definition: RealSchur.h:144
Eigen::RealSchur::RealSchur
RealSchur(const EigenBase< InputType > &matrix, bool computeU=true)
Constructor; computes real Schur decomposition of given matrix.
Definition: RealSchur.h:104
Eigen::Success
@ Success
Definition: Constants.h:441
Eigen::RealSchur::compute
RealSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
Eigen::RealSchur::info
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: RealSchur.h:195
Eigen::EigenBase::cols
EIGEN_DEVICE_FUNC Index cols() const
Definition: EigenBase.h:63
Eigen::RealSchur
Performs a real Schur decomposition of a square matrix.
Definition: RealSchur.h:55
Eigen::NoConvergence
@ NoConvergence
Definition: Constants.h:445
Eigen::RealSchur::computeFromHessenberg
RealSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU)
Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T.
Eigen::RealSchur::m_maxIterationsPerRow
static const int m_maxIterationsPerRow
Maximum number of iterations per row.
Definition: RealSchur.h:223
Eigen::Dynamic
const int Dynamic
Definition: Constants.h:21
Eigen::RealSchur::getMaxIterations
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: RealSchur.h:213
Eigen::RealSchur::RealSchur
RealSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition: RealSchur.h:83
Eigen::Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 >
Eigen::RealSchur::matrixU
const MatrixType & matrixU() const
Returns the orthogonal matrix in the Schur decomposition.
Definition: RealSchur.h:127
Eigen::RealSchur::setMaxIterations
RealSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: RealSchur.h:206
Eigen::ComputationInfo
ComputationInfo
Definition: Constants.h:439
Eigen::HessenbergDecomposition< MatrixType >
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:42