Path Tracer
Classes | Public Types | Public Member Functions | Protected Types | Protected Attributes | List of all members
Eigen::IncompleteLUT< _Scalar, _StorageIndex > Class Template Reference

Incomplete LU factorization with dual-threshold strategy. More...

#include <IncompleteLUT.h>

Inheritance diagram for Eigen::IncompleteLUT< _Scalar, _StorageIndex >:
Eigen::SparseSolverBase< IncompleteLUT< _Scalar, int > > Eigen::internal::noncopyable

Classes

struct  keep_diag
 

Public Types

enum  { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }
 
typedef _Scalar Scalar
 
typedef _StorageIndex StorageIndex
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef Matrix< Scalar, Dynamic, 1 > Vector
 
typedef Matrix< StorageIndex, Dynamic, 1 > VectorI
 
typedef SparseMatrix< Scalar, RowMajor, StorageIndex > FactorType
 

Public Member Functions

template<typename MatrixType >
 IncompleteLUT (const MatrixType &mat, const RealScalar &droptol=NumTraits< Scalar >::dummy_precision(), int fillfactor=10)
 
Index rows () const
 
Index cols () const
 
ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
template<typename MatrixType >
void analyzePattern (const MatrixType &amat)
 
template<typename MatrixType >
void factorize (const MatrixType &amat)
 
template<typename MatrixType >
IncompleteLUTcompute (const MatrixType &amat)
 
void setDroptol (const RealScalar &droptol)
 
void setFillfactor (int fillfactor)
 
template<typename Rhs , typename Dest >
void _solve_impl (const Rhs &b, Dest &x) const
 
template<typename _MatrixType >
void analyzePattern (const _MatrixType &amat)
 
template<typename _MatrixType >
void factorize (const _MatrixType &amat)
 
- Public Member Functions inherited from Eigen::SparseSolverBase< IncompleteLUT< _Scalar, int > >
 SparseSolverBase ()
 
IncompleteLUT< _Scalar, int > & derived ()
 
const IncompleteLUT< _Scalar, int > & derived () const
 
const Solve< IncompleteLUT< _Scalar, int >, Rhs > solve (const MatrixBase< Rhs > &b) const
 
const Solve< IncompleteLUT< _Scalar, int >, Rhs > solve (const SparseMatrixBase< Rhs > &b) const
 
void _solve_impl (const SparseMatrixBase< Rhs > &b, SparseMatrixBase< Dest > &dest) const
 

Protected Types

typedef SparseSolverBase< IncompleteLUTBase
 

Protected Attributes

FactorType m_lu
 
RealScalar m_droptol
 
int m_fillfactor
 
bool m_analysisIsOk
 
bool m_factorizationIsOk
 
ComputationInfo m_info
 
PermutationMatrix< Dynamic, Dynamic, StorageIndex > m_P
 
PermutationMatrix< Dynamic, Dynamic, StorageIndex > m_Pinv
 
bool m_isInitialized
 
- Protected Attributes inherited from Eigen::SparseSolverBase< IncompleteLUT< _Scalar, int > >
bool m_isInitialized
 

Detailed Description

template<typename _Scalar, typename _StorageIndex = int>
class Eigen::IncompleteLUT< _Scalar, _StorageIndex >

Incomplete LU factorization with dual-threshold strategy.

\implsparsesolverconcept

During the numerical factorization, two dropping rules are used : 1) any element whose magnitude is less than some tolerance is dropped. This tolerance is obtained by multiplying the input tolerance droptol by the average magnitude of all the original elements in the current row. 2) After the elimination of the row, only the fill largest elements in the L part and the fill largest elements in the U part are kept (in addition to the diagonal element ). Note that fill is computed from the input parameter fillfactor which is used the ratio to control the fill_in relatively to the initial number of nonzero elements.

The two extreme cases are when droptol=0 (to keep all the fill*2 largest elements) and when fill=n/2 with droptol being different to zero.

References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.

NOTE : The following implementation is derived from the ILUT implementation in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota released under the terms of the GNU LGPL: http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html alternatively, on GMANE: http://comments.gmane.org/gmane.comp.lib.eigen/3302

Member Function Documentation

◆ compute()

template<typename _Scalar , typename _StorageIndex = int>
template<typename MatrixType >
IncompleteLUT& Eigen::IncompleteLUT< _Scalar, _StorageIndex >::compute ( const MatrixType &  amat)
inline

Compute an incomplete LU factorization with dual threshold on the matrix mat No pivoting is done in this version

◆ info()

template<typename _Scalar , typename _StorageIndex = int>
ComputationInfo Eigen::IncompleteLUT< _Scalar, _StorageIndex >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was successful, NumericalIssue if the matrix.appears to be negative.

◆ setDroptol()

template<typename Scalar , typename StorageIndex >
void Eigen::IncompleteLUT< Scalar, StorageIndex >::setDroptol ( const RealScalar &  droptol)

Set control parameter droptol

Parameters
droptolDrop any element whose magnitude is less than this tolerance

◆ setFillfactor()

template<typename Scalar , typename StorageIndex >
void Eigen::IncompleteLUT< Scalar, StorageIndex >::setFillfactor ( int  fillfactor)

Set control parameter fillfactor

Parameters
fillfactorThis is used to compute the number fill_in of largest elements to keep on each row.

The documentation for this class was generated from the following file: