|
enum | { ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
} |
|
typedef _MatrixType | MatrixType |
|
typedef MatrixType::Scalar | Scalar |
|
typedef MatrixType::RealScalar | RealScalar |
|
typedef MatrixType::StorageIndex | StorageIndex |
|
typedef Matrix< Scalar, Dynamic, 1 > | Vector |
|
typedef Matrix< int, 1, MatrixType::ColsAtCompileTime > | IntRowVectorType |
|
typedef Matrix< int, MatrixType::RowsAtCompileTime, 1 > | IntColVectorType |
|
typedef SparseMatrix< Scalar > | LUMatrixType |
|
typedef SparseMatrix< Scalar, ColMajor, int > | KLUMatrixType |
|
typedef Ref< const KLUMatrixType, StandardCompressedFormat > | KLUMatrixRef |
|
|
void | init () |
|
void | analyzePattern_impl () |
|
void | factorize_impl () |
|
template<typename MatrixDerived > |
void | grab (const EigenBase< MatrixDerived > &A) |
|
void | grab (const KLUMatrixRef &A) |
|
|
KLUMatrixType | m_dummy |
|
KLUMatrixRef | mp_matrix |
|
klu_numeric * | m_numeric |
|
klu_symbolic * | m_symbolic |
|
klu_common | m_common |
|
ComputationInfo | m_info |
|
int | m_factorizationIsOk |
|
int | m_analysisIsOk |
|
bool | m_extractedDataAreDirty |
|
bool | m_isInitialized |
|
◆ analyzePattern()
template<typename _MatrixType >
template<typename InputMatrixType >
void Eigen::KLU< _MatrixType >::analyzePattern |
( |
const InputMatrixType & |
matrix | ) |
|
|
inline |
Performs a symbolic decomposition on the sparcity of matrix.
This function is particularly useful when solving for several problems having the same structure.
- See also
- factorize(), compute()
◆ compute()
template<typename _MatrixType >
template<typename InputMatrixType >
void Eigen::KLU< _MatrixType >::compute |
( |
const InputMatrixType & |
matrix | ) |
|
|
inline |
Computes the sparse Cholesky decomposition of matrix Note that the matrix should be column-major, and in compressed format for best performance.
- See also
- SparseMatrix::makeCompressed().
◆ factorize()
template<typename _MatrixType >
template<typename InputMatrixType >
void Eigen::KLU< _MatrixType >::factorize |
( |
const InputMatrixType & |
matrix | ) |
|
|
inline |
Performs a numeric decomposition of matrix
The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
- See also
- analyzePattern(), compute()
◆ info()
template<typename _MatrixType >
Reports whether previous computation was successful.
- Returns
Success
if computation was successful, NumericalIssue
if the matrix.appears to be negative.
◆ kluCommon() [1/2]
template<typename _MatrixType >
klu_common& Eigen::KLU< _MatrixType >::kluCommon |
( |
| ) |
|
|
inline |
Provides access to the control settings array used by UmfPack.
If this array contains NaN's, the default values are used.
See KLU documentation for details.
◆ kluCommon() [2/2]
template<typename _MatrixType >
const klu_common& Eigen::KLU< _MatrixType >::kluCommon |
( |
| ) |
const |
|
inline |
Provides access to the control settings array used by KLU.
See KLU documentation for details.
The documentation for this class was generated from the following file: