The base class for the direct and incomplete LU factorization of SuperLU.
More...
#include <SuperLUSupport.h>
|
enum | { ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
} |
|
typedef _MatrixType | MatrixType |
|
typedef MatrixType::Scalar | Scalar |
|
typedef MatrixType::RealScalar | RealScalar |
|
typedef MatrixType::StorageIndex | StorageIndex |
|
typedef Matrix< Scalar, Dynamic, 1 > | Vector |
|
typedef Matrix< int, 1, MatrixType::ColsAtCompileTime > | IntRowVectorType |
|
typedef Matrix< int, MatrixType::RowsAtCompileTime, 1 > | IntColVectorType |
|
typedef Map< PermutationMatrix< Dynamic, Dynamic, int > > | PermutationMap |
|
typedef SparseMatrix< Scalar > | LUMatrixType |
|
|
void | initFactorization (const MatrixType &a) |
|
void | init () |
|
void | extractData () const |
|
void | clearFactors () |
|
Derived & | derived () |
|
const Derived & | derived () const |
|
template<typename _MatrixType, typename Derived>
class Eigen::SuperLUBase< _MatrixType, Derived >
The base class for the direct and incomplete LU factorization of SuperLU.
◆ analyzePattern()
template<typename _MatrixType , typename Derived >
Performs a symbolic decomposition on the sparcity of matrix.
This function is particularly useful when solving for several problems having the same structure.
- See also
- factorize()
◆ compute()
template<typename _MatrixType , typename Derived >
Computes the sparse Cholesky decomposition of matrix
◆ info()
template<typename _MatrixType , typename Derived >
Reports whether previous computation was successful.
- Returns
Success
if computation was successful, NumericalIssue
if the matrix.appears to be negative.
◆ options()
template<typename _MatrixType , typename Derived >
- Returns
- a reference to the Super LU option object to configure the Super LU algorithms.
The documentation for this class was generated from the following file: