11 #ifndef EIGEN_TRIDIAGONALIZATION_H
12 #define EIGEN_TRIDIAGONALIZATION_H
18 template<
typename MatrixType>
struct TridiagonalizationMatrixTReturnType;
19 template<
typename MatrixType>
21 :
public traits<typename MatrixType::PlainObject>
23 typedef typename MatrixType::PlainObject ReturnType;
27 template<
typename MatrixType,
typename CoeffVectorType>
29 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
71 typedef typename MatrixType::Scalar Scalar;
76 Size = MatrixType::RowsAtCompileTime,
77 SizeMinusOne = Size ==
Dynamic ?
Dynamic : (Size > 1 ? Size - 1 : 1),
78 Options = MatrixType::Options,
79 MaxSize = MatrixType::MaxRowsAtCompileTime,
80 MaxSizeMinusOne = MaxSize ==
Dynamic ?
Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
86 typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
92 >::type DiagonalReturnType;
97 >::type SubDiagonalReturnType;
115 : m_matrix(size,size),
116 m_hCoeffs(size > 1 ? size-1 : 1),
117 m_isInitialized(false)
130 template<
typename InputType>
132 : m_matrix(matrix.derived()),
133 m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
134 m_isInitialized(false)
136 internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
137 m_isInitialized =
true;
157 template<
typename InputType>
162 internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
163 m_isInitialized =
true;
185 eigen_assert(m_isInitialized &&
"Tridiagonalization is not initialized.");
222 eigen_assert(m_isInitialized &&
"Tridiagonalization is not initialized.");
243 eigen_assert(m_isInitialized &&
"Tridiagonalization is not initialized.");
245 .setLength(m_matrix.rows() - 1)
268 eigen_assert(m_isInitialized &&
"Tridiagonalization is not initialized.");
285 DiagonalReturnType
diagonal()
const;
302 CoeffVectorType m_hCoeffs;
303 bool m_isInitialized;
306 template<
typename MatrixType>
307 typename Tridiagonalization<MatrixType>::DiagonalReturnType
310 eigen_assert(m_isInitialized &&
"Tridiagonalization is not initialized.");
311 return m_matrix.diagonal().real();
314 template<
typename MatrixType>
318 eigen_assert(m_isInitialized &&
"Tridiagonalization is not initialized.");
319 return m_matrix.template diagonal<-1>().real();
347 template<
typename MatrixType,
typename CoeffVectorType>
349 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
352 typedef typename MatrixType::Scalar Scalar;
353 typedef typename MatrixType::RealScalar RealScalar;
354 Index n = matA.rows();
355 eigen_assert(n==matA.cols());
356 eigen_assert(n==hCoeffs.size()+1 || n==1);
358 for (
Index i = 0; i<n-1; ++i)
360 Index remainingSize = n-i-1;
363 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
367 matA.col(i).coeffRef(i+1) = 1;
369 hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
370 * (conj(h) * matA.col(i).tail(remainingSize)));
372 hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
374 matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
375 .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
377 matA.col(i).coeffRef(i+1) = beta;
378 hCoeffs.coeffRef(i) = h;
383 template<
typename MatrixType,
384 int Size=MatrixType::ColsAtCompileTime,
385 bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
386 struct tridiagonalization_inplace_selector;
428 template<
typename MatrixType,
typename DiagonalType,
typename SubDiagonalType>
430 void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
bool extractQ)
432 eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
433 tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
439 template<
typename MatrixType,
int Size,
bool IsComplex>
444 template<
typename DiagonalType,
typename SubDiagonalType>
445 static EIGEN_DEVICE_FUNC
446 void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
bool extractQ)
449 tridiagonalization_inplace(mat,hCoeffs);
450 diag = mat.diagonal().real();
451 subdiag = mat.template diagonal<-1>().real();
463 template<
typename MatrixType>
466 typedef typename MatrixType::Scalar Scalar;
467 typedef typename MatrixType::RealScalar RealScalar;
469 template<
typename DiagonalType,
typename SubDiagonalType>
470 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
bool extractQ)
473 const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
475 RealScalar v1norm2 = numext::abs2(mat(2,0));
480 subdiag[0] = mat(1,0);
481 subdiag[1] = mat(2,1);
487 RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
488 RealScalar invBeta = RealScalar(1)/beta;
489 Scalar m01 = mat(1,0) * invBeta;
490 Scalar m02 = mat(2,0) * invBeta;
491 Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
492 diag[1] = mat(1,1) + m02*q;
493 diag[2] = mat(2,2) - m02*q;
495 subdiag[1] = mat(2,1) - m01 * q;
509 template<
typename MatrixType,
bool IsComplex>
512 typedef typename MatrixType::Scalar Scalar;
514 template<
typename DiagonalType,
typename SubDiagonalType>
515 static EIGEN_DEVICE_FUNC
516 void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&,
bool extractQ)
518 diag(0,0) = numext::real(mat(0,0));
520 mat(0,0) = Scalar(1);
532 :
public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
541 template <
typename ResultType>
542 inline void evalTo(ResultType& result)
const
545 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
546 result.diagonal() = m_matrix.diagonal();
547 result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
550 Index rows()
const {
return m_matrix.rows(); }
551 Index cols()
const {
return m_matrix.cols(); }
554 typename MatrixType::Nested m_matrix;
561 #endif // EIGEN_TRIDIAGONALIZATION_H