Path Tracer
Public Types | Public Member Functions | Protected Types | Protected Member Functions | Protected Attributes | Friends | List of all members
Eigen::HouseholderSequence< VectorsType, CoeffsType, Side > Class Template Reference

Sequence of Householder reflections acting on subspaces with decreasing size. More...

#include <HouseholderSequence.h>

Public Types

enum  { RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime }
 
typedef internal::traits< HouseholderSequence >::Scalar Scalar
 
typedef HouseholderSequence< typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename VectorsType::ConjugateReturnType >::type, VectorsType >::type, typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename CoeffsType::ConjugateReturnType >::type, CoeffsType >::type, Side > ConjugateReturnType
 
typedef HouseholderSequence< VectorsType, typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename CoeffsType::ConjugateReturnType >::type, CoeffsType >::type, Side > AdjointReturnType
 
typedef HouseholderSequence< typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename VectorsType::ConjugateReturnType >::type, VectorsType >::type, CoeffsType, Side > TransposeReturnType
 
typedef HouseholderSequence< typename internal::add_const< VectorsType >::type, typename internal::add_const< CoeffsType >::type, Side > ConstHouseholderSequence
 

Public Member Functions

EIGEN_DEVICE_FUNC HouseholderSequence (const VectorsType &v, const CoeffsType &h)
 Constructor. More...
 
EIGEN_DEVICE_FUNC HouseholderSequence (const HouseholderSequence &other)
 Copy constructor.
 
EIGEN_DEVICE_FUNC Index rows () const
 Number of rows of transformation viewed as a matrix. More...
 
EIGEN_DEVICE_FUNC Index cols () const
 Number of columns of transformation viewed as a matrix. More...
 
EIGEN_DEVICE_FUNC const EssentialVectorType essentialVector (Index k) const
 Essential part of a Householder vector. More...
 
TransposeReturnType transpose () const
 Transpose of the Householder sequence.
 
ConjugateReturnType conjugate () const
 Complex conjugate of the Householder sequence.
 
template<bool Cond>
EIGEN_DEVICE_FUNC internal::conditional< Cond, ConjugateReturnType, ConstHouseholderSequence >::type conjugateIf () const
 
AdjointReturnType adjoint () const
 Adjoint (conjugate transpose) of the Householder sequence.
 
AdjointReturnType inverse () const
 Inverse of the Householder sequence (equals the adjoint).
 
template<typename DestType >
EIGEN_DEVICE_FUNC void evalTo (DestType &dst) const
 
template<typename Dest , typename Workspace >
EIGEN_DEVICE_FUNC void evalTo (Dest &dst, Workspace &workspace) const
 
template<typename Dest >
void applyThisOnTheRight (Dest &dst) const
 
template<typename Dest , typename Workspace >
void applyThisOnTheRight (Dest &dst, Workspace &workspace) const
 
template<typename Dest >
void applyThisOnTheLeft (Dest &dst, bool inputIsIdentity=false) const
 
template<typename Dest , typename Workspace >
void applyThisOnTheLeft (Dest &dst, Workspace &workspace, bool inputIsIdentity=false) const
 
template<typename OtherDerived >
internal::matrix_type_times_scalar_type< Scalar, OtherDerived >::Type operator* (const MatrixBase< OtherDerived > &other) const
 Computes the product of a Householder sequence with a matrix. More...
 
EIGEN_DEVICE_FUNC HouseholderSequencesetLength (Index length)
 Sets the length of the Householder sequence. More...
 
EIGEN_DEVICE_FUNC HouseholderSequencesetShift (Index shift)
 Sets the shift of the Householder sequence. More...
 
EIGEN_DEVICE_FUNC Index length () const
 Returns the length of the Householder sequence.
 
EIGEN_DEVICE_FUNC Index shift () const
 Returns the shift of the Householder sequence.
 

Protected Types

enum  { BlockSize = 48 }
 

Protected Member Functions

HouseholderSequencesetReverseFlag (bool reverse)
 
bool reverseFlag () const
 

Protected Attributes

VectorsType::Nested m_vectors
 
CoeffsType::Nested m_coeffs
 
bool m_reverse
 
Index m_length
 
Index m_shift
 

Friends

template<typename _VectorsType , typename _CoeffsType , int _Side>
struct internal::hseq_side_dependent_impl
 

Detailed Description

template<typename VectorsType, typename CoeffsType, int Side>
class Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >

Sequence of Householder reflections acting on subspaces with decreasing size.

\householder_module

Template Parameters
VectorsTypetype of matrix containing the Householder vectors
CoeffsTypetype of vector containing the Householder coefficients
Sideeither OnTheLeft (the default) or OnTheRight

This class represents a product sequence of Householder reflections where the first Householder reflection acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), and ColPivHouseholderQR::householderQ() all return a HouseholderSequence.

More precisely, the class HouseholderSequence represents an $ n \times n $ matrix $ H $ of the form $ H = \prod_{i=0}^{n-1} H_i $ where the i-th Householder reflection is $ H_i = I - h_i v_i v_i^* $. The i-th Householder coefficient $ h_i $ is a scalar and the i-th Householder vector $ v_i $ is a vector of the form

\[ v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. \]

The last $ n-i $ entries of $ v_i $ are called the essential part of the Householder vector.

Typical usages are listed below, where H is a HouseholderSequence:

A.applyOnTheRight(H); // A = A * H
A.applyOnTheLeft(H); // A = H * A
A.applyOnTheRight(H.adjoint()); // A = A * H^*
A.applyOnTheLeft(H.adjoint()); // A = H^* * A
MatrixXd Q = H; // conversion to a dense matrix

In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.

See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.

See also
MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

Constructor & Destructor Documentation

◆ HouseholderSequence()

template<typename VectorsType , typename CoeffsType , int Side>
EIGEN_DEVICE_FUNC Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::HouseholderSequence ( const VectorsType &  v,
const CoeffsType &  h 
)
inline

Constructor.

Parameters
[in]vMatrix containing the essential parts of the Householder vectors
[in]hVector containing the Householder coefficients

Constructs the Householder sequence with coefficients given by h and vectors given by v. The i-th Householder coefficient $ h_i $ is given by h(i) and the essential part of the i-th Householder vector $ v_i $ is given by v(k,i) with k > i (the subdiagonal part of the i-th column). If v has fewer columns than rows, then the Householder sequence contains as many Householder reflections as there are columns.

Note
The HouseholderSequence object stores v and h by reference.

Example:

Output:

See also
setLength(), setShift()

Member Function Documentation

◆ cols()

template<typename VectorsType , typename CoeffsType , int Side>
EIGEN_DEVICE_FUNC Index Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::cols ( void  ) const
inline

Number of columns of transformation viewed as a matrix.

Returns
Number of columns

This equals the dimension of the space that the transformation acts on.

◆ conjugateIf()

template<typename VectorsType , typename CoeffsType , int Side>
template<bool Cond>
EIGEN_DEVICE_FUNC internal::conditional<Cond,ConjugateReturnType,ConstHouseholderSequence>::type Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::conjugateIf ( ) const
inline
Returns
an expression of the complex conjugate of *this if Cond==true, returns *this otherwise.

◆ essentialVector()

template<typename VectorsType , typename CoeffsType , int Side>
EIGEN_DEVICE_FUNC const EssentialVectorType Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::essentialVector ( Index  k) const
inline

Essential part of a Householder vector.

Parameters
[in]kIndex of Householder reflection
Returns
Vector containing non-trivial entries of k-th Householder vector

This function returns the essential part of the Householder vector $ v_i $. This is a vector of length $ n-i $ containing the last $ n-i $ entries of the vector

\[ v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. \]

The index $ i $ equals k + shift(), corresponding to the k-th column of the matrix v passed to the constructor.

See also
setShift(), shift()

◆ operator*()

template<typename VectorsType , typename CoeffsType , int Side>
template<typename OtherDerived >
internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::operator* ( const MatrixBase< OtherDerived > &  other) const
inline

Computes the product of a Householder sequence with a matrix.

Parameters
[in]otherMatrix being multiplied.
Returns
Expression object representing the product.

This function computes $ HM $ where $ H $ is the Householder sequence represented by *this and $ M $ is the matrix other.

◆ rows()

template<typename VectorsType , typename CoeffsType , int Side>
EIGEN_DEVICE_FUNC Index Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::rows ( void  ) const
inline

Number of rows of transformation viewed as a matrix.

Returns
Number of rows

This equals the dimension of the space that the transformation acts on.

◆ setLength()

template<typename VectorsType , typename CoeffsType , int Side>
EIGEN_DEVICE_FUNC HouseholderSequence& Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::setLength ( Index  length)
inline

Sets the length of the Householder sequence.

Parameters
[in]lengthNew value for the length.

By default, the length $ n $ of the Householder sequence $ H = H_0 H_1 \ldots H_{n-1} $ is set to the number of columns of the matrix v passed to the constructor, or the number of rows if that is smaller. After this function is called, the length equals length.

See also
length()

◆ setShift()

template<typename VectorsType , typename CoeffsType , int Side>
EIGEN_DEVICE_FUNC HouseholderSequence& Eigen::HouseholderSequence< VectorsType, CoeffsType, Side >::setShift ( Index  shift)
inline

Sets the shift of the Householder sequence.

Parameters
[in]shiftNew value for the shift.

By default, a HouseholderSequence object represents $ H = H_0 H_1 \ldots H_{n-1} $ and the i-th column of the matrix v passed to the constructor corresponds to the i-th Householder reflection. After this function is called, the object represents $ H = H_{\mathrm{shift}} H_{\mathrm{shift}+1} \ldots H_{n-1} $ and the i-th column of v corresponds to the (shift+i)-th Householder reflection.

See also
shift()

The documentation for this class was generated from the following files: