11 #ifndef EIGEN_BIDIAGONALIZATION_H
12 #define EIGEN_BIDIAGONALIZATION_H
24 typedef _MatrixType MatrixType;
26 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
27 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
30 typedef typename MatrixType::Scalar Scalar;
31 typedef typename MatrixType::RealScalar RealScalar;
43 const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
57 : m_householder(matrix.rows(), matrix.cols()),
58 m_bidiagonal(matrix.cols(), matrix.cols()),
59 m_isInitialized(false)
67 const MatrixType& householder()
const {
return m_householder; }
68 const BidiagonalType& bidiagonal()
const {
return m_bidiagonal; }
70 const HouseholderUSequenceType householderU()
const
72 eigen_assert(m_isInitialized &&
"UpperBidiagonalization is not initialized.");
73 return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
76 const HouseholderVSequenceType householderV()
78 eigen_assert(m_isInitialized &&
"UpperBidiagonalization is not initialized.");
79 return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
80 .setLength(m_householder.cols()-1)
85 MatrixType m_householder;
86 BidiagonalType m_bidiagonal;
92 template<
typename MatrixType>
93 void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
94 typename MatrixType::RealScalar *diagonal,
95 typename MatrixType::RealScalar *upper_diagonal,
96 typename MatrixType::Scalar* tempData = 0)
98 typedef typename MatrixType::Scalar Scalar;
100 Index rows = mat.rows();
101 Index cols = mat.cols();
103 typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
107 tempVector.resize(rows);
108 tempData = tempVector.data();
111 for (
Index k = 0; ; ++k)
113 Index remainingRows = rows - k;
114 Index remainingCols = cols - k - 1;
117 mat.col(k).tail(remainingRows)
118 .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]);
120 mat.bottomRightCorner(remainingRows, remainingCols)
121 .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
123 if(k == cols-1)
break;
126 mat.row(k).tail(remainingCols)
127 .makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
129 mat.bottomRightCorner(remainingRows-1, remainingCols)
130 .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).adjoint(), mat.coeff(k,k+1), tempData);
151 template<
typename MatrixType>
152 void upperbidiagonalization_blocked_helper(MatrixType& A,
153 typename MatrixType::RealScalar *diagonal,
154 typename MatrixType::RealScalar *upper_diagonal,
161 typedef typename MatrixType::Scalar Scalar;
162 typedef typename MatrixType::RealScalar RealScalar;
163 typedef typename NumTraits<RealScalar>::Literal Literal;
164 enum { StorageOrder = traits<MatrixType>::Flags &
RowMajorBit };
165 typedef InnerStride<int(StorageOrder) == int(
ColMajor) ? 1 :
Dynamic> ColInnerStride;
166 typedef InnerStride<int(StorageOrder) == int(
ColMajor) ?
Dynamic : 1> RowInnerStride;
167 typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
168 typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
169 typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
171 Index brows = A.rows();
172 Index bcols = A.cols();
174 Scalar tau_u, tau_u_prev(0), tau_v;
176 for(
Index k = 0; k < bs; ++k)
178 Index remainingRows = brows - k;
179 Index remainingCols = bcols - k - 1;
181 SubMatType X_k1( X.block(k,0, remainingRows,k) );
182 SubMatType V_k1( A.block(k,0, remainingRows,k) );
185 SubColumnType v_k = A.col(k).tail(remainingRows);
186 v_k -= V_k1 * Y.row(k).head(k).adjoint();
187 if(k) v_k -= X_k1 * A.col(k).head(k);
190 v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
194 SubMatType Y_k ( Y.block(k+1,0, remainingCols, k+1) );
195 SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) );
203 SubColumnType y_k( Y.col(k).tail(remainingCols) );
206 SubColumnType tmp( Y.col(k).head(k) );
207 y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k;
208 tmp.noalias() = V_k1.adjoint() * v_k;
209 y_k.noalias() -= Y_k.leftCols(k) * tmp;
210 tmp.noalias() = X_k1.adjoint() * v_k;
211 y_k.noalias() -= U_k1.adjoint() * tmp;
212 y_k *= numext::conj(tau_v);
216 SubRowType u_k( A.row(k).tail(remainingCols) );
217 u_k = u_k.conjugate();
219 u_k -= Y_k * A.row(k).head(k+1).adjoint();
220 if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
224 u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
228 A(k,k+1) = Scalar(1);
232 SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
236 SubColumnType tmp0 ( X.col(k).head(k) ),
237 tmp1 ( X.col(k).head(k+1) );
239 x_k.noalias() = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose();
240 tmp0.noalias() = U_k1 * u_k.transpose();
241 x_k.noalias() -= X_k1.bottomRows(remainingRows-1) * tmp0;
242 tmp1.noalias() = Y_k.adjoint() * u_k.transpose();
243 x_k.noalias() -= A.block(k+1,0, remainingRows-1,k+1) * tmp1;
244 x_k *= numext::conj(tau_u);
245 tau_u = numext::conj(tau_u);
246 u_k = u_k.conjugate();
249 if(k>0) A.coeffRef(k-1,k) = tau_u_prev;
253 A.coeffRef(k-1,k) = tau_u_prev;
255 A.coeffRef(k,k) = tau_v;
259 A.coeffRef(bs-1,bs) = tau_u_prev;
262 if(bcols>bs && brows>bs)
264 SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) );
265 SubMatType A10( A.block(bs,0, brows-bs,bs) );
266 SubMatType A01( A.block(0,bs, bs,bcols-bs) );
267 Scalar tmp = A01(bs-1,0);
268 A01(bs-1,0) = Literal(1);
269 A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
270 A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
283 template<
typename MatrixType,
typename B
idiagType>
284 void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
285 Index maxBlockSize=32,
286 typename MatrixType::Scalar* = 0)
288 typedef typename MatrixType::Scalar Scalar;
289 typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
291 Index rows = A.rows();
292 Index cols = A.cols();
293 Index size = (std::min)(rows, cols);
296 enum { StorageOrder = traits<MatrixType>::Flags &
RowMajorBit };
298 MatrixType::RowsAtCompileTime,
301 MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
303 MatrixType::ColsAtCompileTime,
306 MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
307 Index blockSize = (std::min)(maxBlockSize,size);
310 for(k = 0; k < size; k += blockSize)
312 Index bs = (std::min)(size-k,blockSize);
313 Index brows = rows - k;
314 Index bcols = cols - k;
330 BlockType B = A.block(k,k,brows,bcols);
336 if(k+bs==cols || bcols<48)
338 upperbidiagonalization_inplace_unblocked(B,
339 &(bidiagonal.template diagonal<0>().coeffRef(k)),
340 &(bidiagonal.template diagonal<1>().coeffRef(k)),
347 upperbidiagonalization_blocked_helper<BlockType>( B,
348 &(bidiagonal.template diagonal<0>().coeffRef(k)),
349 &(bidiagonal.template diagonal<1>().coeffRef(k)),
351 X.topLeftCorner(brows,bs),
352 Y.topLeftCorner(bcols,bs)
358 template<
typename _MatrixType>
359 UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(
const _MatrixType& matrix)
361 Index rows = matrix.rows();
362 Index cols = matrix.cols();
363 EIGEN_ONLY_USED_FOR_DEBUG(cols);
365 eigen_assert(rows >= cols &&
"UpperBidiagonalization is only for Arices satisfying rows>=cols.");
367 m_householder = matrix;
369 ColVectorType temp(rows);
371 upperbidiagonalization_inplace_unblocked(m_householder,
372 &(m_bidiagonal.template diagonal<0>().coeffRef(0)),
373 &(m_bidiagonal.template diagonal<1>().coeffRef(0)),
376 m_isInitialized =
true;
380 template<
typename _MatrixType>
381 UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(
const _MatrixType& matrix)
383 Index rows = matrix.rows();
384 Index cols = matrix.cols();
385 EIGEN_ONLY_USED_FOR_DEBUG(rows);
386 EIGEN_ONLY_USED_FOR_DEBUG(cols);
388 eigen_assert(rows >= cols &&
"UpperBidiagonalization is only for Arices satisfying rows>=cols.");
390 m_householder = matrix;
391 upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
393 m_isInitialized =
true;
402 template<
typename Derived>
403 const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
404 MatrixBase<Derived>::bidiagonalization()
const
406 return UpperBidiagonalization<PlainObject>(eval());
414 #endif // EIGEN_BIDIAGONALIZATION_H