Path Tracer
|
Modules | |
Global aligned box typedefs | |
Classes | |
class | Eigen::Map< const Quaternion< _Scalar >, _Options > |
Quaternion expression mapping a constant memory buffer. More... | |
class | Eigen::Map< Quaternion< _Scalar >, _Options > |
Expression of a quaternion from a memory buffer. More... | |
class | Eigen::AlignedBox< _Scalar, _AmbientDim > |
An axis aligned box. More... | |
class | Eigen::AngleAxis< _Scalar > |
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More... | |
class | Eigen::Homogeneous< MatrixType, _Direction > |
Expression of one (or a set of) homogeneous vector(s) More... | |
class | Eigen::Hyperplane< _Scalar, _AmbientDim, _Options > |
A hyperplane. More... | |
class | Eigen::ParametrizedLine< _Scalar, _AmbientDim, _Options > |
A parametrized line. More... | |
class | Eigen::QuaternionBase< Derived > |
Base class for quaternion expressions. More... | |
class | Eigen::Quaternion< _Scalar, _Options > |
The quaternion class used to represent 3D orientations and rotations. More... | |
class | Eigen::Rotation2D< _Scalar > |
Represents a rotation/orientation in a 2 dimensional space. More... | |
class | Eigen::UniformScaling< _Scalar > |
Represents a generic uniform scaling transformation. More... | |
class | Eigen::Transform< _Scalar, _Dim, _Mode, _Options > |
Represents an homogeneous transformation in a N dimensional space. More... | |
class | Eigen::Translation< _Scalar, _Dim > |
Represents a translation transformation. More... | |
Typedefs | |
typedef AngleAxis< float > | Eigen::AngleAxisf |
typedef AngleAxis< double > | Eigen::AngleAxisd |
typedef Quaternion< float > | Eigen::Quaternionf |
typedef Quaternion< double > | Eigen::Quaterniond |
typedef Map< Quaternion< float >, 0 > | Eigen::QuaternionMapf |
typedef Map< Quaternion< double >, 0 > | Eigen::QuaternionMapd |
typedef Map< Quaternion< float >, Aligned > | Eigen::QuaternionMapAlignedf |
typedef Map< Quaternion< double >, Aligned > | Eigen::QuaternionMapAlignedd |
typedef Rotation2D< float > | Eigen::Rotation2Df |
typedef Rotation2D< double > | Eigen::Rotation2Dd |
typedef Transform< float, 2, Isometry > | Eigen::Isometry2f |
typedef Transform< float, 3, Isometry > | Eigen::Isometry3f |
typedef Transform< double, 2, Isometry > | Eigen::Isometry2d |
typedef Transform< double, 3, Isometry > | Eigen::Isometry3d |
typedef Transform< float, 2, Affine > | Eigen::Affine2f |
typedef Transform< float, 3, Affine > | Eigen::Affine3f |
typedef Transform< double, 2, Affine > | Eigen::Affine2d |
typedef Transform< double, 3, Affine > | Eigen::Affine3d |
typedef Transform< float, 2, AffineCompact > | Eigen::AffineCompact2f |
typedef Transform< float, 3, AffineCompact > | Eigen::AffineCompact3f |
typedef Transform< double, 2, AffineCompact > | Eigen::AffineCompact2d |
typedef Transform< double, 3, AffineCompact > | Eigen::AffineCompact3d |
typedef Transform< float, 2, Projective > | Eigen::Projective2f |
typedef Transform< float, 3, Projective > | Eigen::Projective3f |
typedef Transform< double, 2, Projective > | Eigen::Projective2d |
typedef Transform< double, 3, Projective > | Eigen::Projective3d |
Functions | |
template<typename Derived , typename OtherDerived > | |
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type | Eigen::umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true) |
Returns the transformation between two point sets. More... | |
EIGEN_DEVICE_FUNC Matrix< Scalar, 3, 1 > | Eigen::MatrixBase< Derived >::eulerAngles (Index a0, Index a1, Index a2) const |
EIGEN_DEVICE_FUNC HomogeneousReturnType | Eigen::MatrixBase< Derived >::homogeneous () const |
EIGEN_DEVICE_FUNC HomogeneousReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::homogeneous () const |
EIGEN_DEVICE_FUNC const HNormalizedReturnType | Eigen::MatrixBase< Derived >::hnormalized () const |
homogeneous normalization More... | |
EIGEN_DEVICE_FUNC const HNormalizedReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::hnormalized () const |
column or row-wise homogeneous normalization More... | |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type | Eigen::MatrixBase< Derived >::cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC PlainObject | Eigen::MatrixBase< Derived >::cross3 (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC const CrossReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::cross (const MatrixBase< OtherDerived > &other) const |
EIGEN_DEVICE_FUNC PlainObject | Eigen::MatrixBase< Derived >::unitOrthogonal (void) const |
typedef AngleAxis<double> Eigen::AngleAxisd |
double precision angle-axis type
typedef AngleAxis<float> Eigen::AngleAxisf |
single precision angle-axis type
typedef Quaternion<double> Eigen::Quaterniond |
double precision quaternion type
typedef Quaternion<float> Eigen::Quaternionf |
single precision quaternion type
typedef Map<Quaternion<double>, Aligned> Eigen::QuaternionMapAlignedd |
Map a 16-byte aligned array of double precision scalars as a quaternion
typedef Map<Quaternion<float>, Aligned> Eigen::QuaternionMapAlignedf |
Map a 16-byte aligned array of single precision scalars as a quaternion
typedef Map<Quaternion<double>, 0> Eigen::QuaternionMapd |
Map an unaligned array of double precision scalars as a quaternion
typedef Map<Quaternion<float>, 0> Eigen::QuaternionMapf |
Map an unaligned array of single precision scalars as a quaternion
typedef Rotation2D<double> Eigen::Rotation2Dd |
double precision 2D rotation type
typedef Rotation2D<float> Eigen::Rotation2Df |
single precision 2D rotation type
EIGEN_DEVICE_FUNC const VectorwiseOp< ExpressionType, Direction >::CrossReturnType Eigen::VectorwiseOp< ExpressionType, Direction >::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const |
\geometry_module
The referenced matrix must have one dimension equal to 3. The result matrix has the same dimensions than the referenced one.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type Eigen::MatrixBase< Derived >::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const |
\geometry_module
*this
and other Here is a very good explanation of cross-product: http://xkcd.com/199/
With complex numbers, the cross product is implemented as
|
inline |
\geometry_module
*this
and other using only the x, y, and z coefficientsThe size of *this
and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
|
inline |
\geometry_module
*this
using the convention defined by the triplet (a0,a1,a2)Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:
"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:
This corresponds to the right-multiply conventions (with right hand side frames).
The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
|
inline |
homogeneous normalization
\geometry_module
*this
divided by that last coefficient.This can be used to convert homogeneous coordinates to affine coordinates.
It is essentially a shortcut for:
Example:
Output:
|
inline |
column or row-wise homogeneous normalization
\geometry_module
*this
divided by the last coefficient of each column (or row).This can be used to convert homogeneous coordinates to affine coordinates.
It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of *this
.
Example:
Output:
|
inline |
\geometry_module
This can be used to convert affine coordinates to homogeneous coordinates.
\only_for_vectors
Example:
Output:
|
inline |
\geometry_module
This can be used to convert affine coordinates to homogeneous coordinates.
Example:
Output:
internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type Eigen::umeyama | ( | const MatrixBase< Derived > & | src, |
const MatrixBase< OtherDerived > & | dst, | ||
bool | with_scaling = true |
||
) |
Returns the transformation between two point sets.
\geometry_module
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters and
such that
is minimized.
The algorithm is based on the analysis of the covariance matrix of the input point sets
and
where
is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of
though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of
when the input point sets have dimension
.
Currently the method is working only for floating point matrices.
src | Source points ![]() |
dst | Destination points ![]() |
with_scaling | Sets ![]() false is passed. |
|
inline |
\geometry_module
*this
The size of *this
must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this
, i.e., (-y,x).normalized().